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Abstract
In this paper, we develop the asymptotic formulae, obtained in my previous
papers, for the band functions and the Bloch functions of the Schrödinger
operator with the smooth periodic potentials. Then using these formulae,
we determine constructively a family of spectral invariants of this operator
from the given band functions. Some of these invariants generalize the well-
known invariants and others are entirely new. The new invariants are explicitly
expressed by Fourier coefficients of the potential which present the possibility
of determining the potential constructively by using the band functions as input
data.

PACS numbers: 02.30.Jr, 02.30.Tb, 02.30.Zz

1. Introduction

We investigate the Schrödinger operator L(q) = −� + q in L2(R
d), d � 2, with a real

periodic, relative to a lattice � in R
d , potential q ∈ Ws

2 (F ), where F is the fundamental
domain R

d/� of �, s � 6(3d(d + 1)2) + d. The relation q ∈ Ws
2 (F ) means that

q(x) =
∑
γ∈�

qγ ein〈γ,x〉, x ∈ R
d , and

∑
γ∈�

|qγ |2(1 + |γ |2s) < ∞, (1)

where � ≡ {δ ∈ R
d : 〈δ, ω〉 ∈ 2πZ,∀ω ∈ �} is the lattice dual to �, qγ = ∫

F
q(x) e−i〈γ,x〉 dx

is the Fourier coefficient of q and 〈·, ·〉 and | · | are the inner product and norm in R
d . Without

loss of generality, it can be assumed that the measure µ(F) of F is 1 and q0 = 0. The spectrum
of L(q) is the union of the spectra of the operators Lt(q), for t ∈ F ∗ ≡ R

d/�, generated in
L2(F ) by the differential expression −�u + qu and the conditions

u(x + ω) = ei〈t,ω〉u(x), ∀ω ∈ �
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(see [1, 5]). The eigenvalues �1(t) � �2(t) � · · · of Lt(q) define functions �1(t),�2(t), . . . ,

of t that are called the band functions of L(q). The eigenfunction 	n,t of Lt(q) corresponding
to �n(t) is known as the Bloch Function. The main purpose of this paper is the constructive
determination of a family of spectral invariants from the given band functions.

In the introduction section, we present a list of the main results. In section 2, we prove the
main results without giving some estimations which are given in section 3 and in appendices. To
list the main results, the following notations are introduced. Let δ be a visible point of �, i.e., δ is
the nonzero element of � of minimal norm belonging to the line δR,�δ = {h ∈ � : 〈h, δ〉 = 0}
be a sublattice of � in the hyperplane Hδ = {x ∈ R

d : 〈x, δ〉 = 0} and �δ be a dual lattice of �δ.

Denote by M(�) and M(�δ) the set of all visible points of the lattices � and �δ , respectively.
The spectral invariants are expressed by the band functions and the Bloch functions of the
Schrödinger operator L(qδ) in L2(R

d) with the directional potential

qδ(x) =
∑
n∈Z

qnδ ein〈δ,x〉, x ∈ R
d (2)

which is the restriction of the original potential q to the linear span of {ein〈δ,x〉 : n ∈ Z}. The
function qδ depends only on one variable ζ = 〈δ, x〉 and can be written as

qδ(x) = Q(〈δ, x〉), where Q(ζ) =
∑
n∈Z

qnδ einζ .

The band functions and the Bloch functions of the operator L(qδ) are expressed by eigenvalues
µj(v) and eigenfunctions ϕj,v(ζ ) of the Sturm–Liouville operator Tv(Q) generated by the
boundary value problem

−|δ|2y ′′(ζ ) + Q(ζ)y(ζ ) = µy(ζ ), y(2π) = ei2πvy(0), y ′(2π) = ei2πvy ′(0),

where j ∈ Z, v ∈ [0, 1).

In the pioneering paper [2] about isospectral potentials, it was proven that if q ∈
C6(F ), ω ∈ �\0, and δ is the visible point of � satisfying 〈δ, ω〉 = 0, then given
band functions one may recover the eigenvalues of Tv(Q) for v = 0, 1

2 and the invariants
I (ω, δ, j, v) for j ∈ Z, v = 0, 1

2 , where

I (ω, δ, j, v) =
∫

F

|Qω(x)ϕj,v(〈x, δ〉)|2 dx

if µj(v) is a simple eigenvalue,

I (ω, δ, j, v) =
∫

F

|Qω(x)|2((ϕj+1,v(〈x, δ〉))2 + (ϕj,v(〈x, δ〉))2) dx

if µj(v) is not a simple eigenvalue, namely if µj(v) = µj+1(v) and Qω(x) is defined by

Qω(x) =
∑

γ :γ∈�,〈γ,ω〉	=0

γ

〈ω, γ 〉qγ ei〈γ,x〉. (3)

The proofs given in [2] were nonconstructive. In [3] a constructive way of determining the
spectrum of Lt(q

δ) from the spectrum of Lt(q) for the case d = 2 was given.
In this paper, we consider the Schrödinger operator L(q) for arbitrary dimension d and

using a given band function as input date, we constructively determine all eigenvalues of
Tv(Q) for all values of v ∈ [0, 1) and a family of new spectral invariants

J (δ, b, j, v) =
∫

F

|qδ,b(x)ϕj,v(〈δ, x〉)|2 dx (4)

2
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for υ ∈ (0, 1
2

) ∪ ( 1
2 , 1
)
, j ∈ Z, and for all visible elements b and δ of �δ and �, where

qδ,b(x) =
∑

γ∈S(δ,b)\δR

γ

〈b, γ 〉qγ ei〈γ,x〉, (5)

S(δ, b) = P(δ, b) ∩ �, and P(δ, b) is the plane containing δ, b and 0. The formula (3)
contains all Fourier coefficients qγ of q except the Fourier coefficients corresponding to the
vectors of a hyperplane. However, (5) contains only the Fourier coefficients corresponding
to the vectors of the plane P(δ, b) except the vectors of δR. If the potential q is a
trigonometric polynomial and d > 2, then most of the polynomials (5) contain either
two nonzero Fourier coefficients qγ and q−γ , where q−γ = qγ , or four nonzero Fourier
coefficients qγ1 , qγ2 , q−γ1 , q−γ2 , or 6 nonzero Fourier coefficients qγ1 , qγ2 , qγ3 , q−γ1 , q−γ2 , q−γ3 .
Moreover µn(v), for υ ∈ (0, 1

2

)∪ ( 1
2 , 1
)
, j ∈ Z, is a simple eigenvalue and the corresponding

eigenfunction ϕn,v(ζ ) has a simple asymptotic decomposition. Therefore, substituting the
asymptotic decomposition

|ϕn,v(ζ )|2 = A0 +
A1(ζ )

n
+

A2(ζ )

n2
+ · · · , (6)

where Ak(ζ ) is expressed via Q(ζ), into (4) we find the new invariants

Jk(δ, b) =
∫

F

|qδ,b(x)|2Ak(〈δ, x〉) dx (7)

for k = 0, 1, 2, . . . , δ ∈ M(�), b ∈ M(�δ). Note that Jk(δ, b) is explicitly expressed by the
Fourier coefficients of q. Moreover, if d > 2 and q(x) is a trigonometric polynomial, then,
in general, the number of the nonzero invariants (7) is greater than the number of nonzero
Fourier coefficients of q and most of these invariants are explicitly expressed by m Fourier
coefficients of q, where m � 3. This situation allows us to give (it will be given in next papers)
an algorithm for finding the potential q from these spectral invariants.

Let us describe the brief scheme of the constructive determination of these invariants. We
use the asymptotic formulae for the band function and the Bloch function obtained in [10].
Note that the similar asymptotic formulae have been obtained in [3, 4, 7–9]. First by improving
the asymptotic formulae for the band functions and the Bloch functions, in the high energy
region and near diffraction hyperplanes, obtained in [10], we get an asymptotic formula, where
there are sharp estimations for the first and second terms of the asymptotic decomposition. To
describe this improvement, let us introduce the following notations. The eigenvalues of the
operator Lt(0) with zero potential are |γ + t |2 for γ ∈ �. If the quasimomentum γ + t lies near
the diffraction hyperplane

Dδ = {x ∈ R
d : |x|2 − |x + δ|2 = 0}, (8)

then the corresponding eigenvalue of Lt(q) is close to the eigenvalue of the operator Lt(q
δ)

with directional potential (2). To describe the eigenvalue of Lt(q
δ) we consider the lattice �δ.

Let Fδ ≡ Hδ/�δ be the fundamental domain of �δ. In this notation, the quasimomentum γ + t

has an orthogonal decomposition

γ + t = β + τ + (j + v)δ, (9)

where β ∈ �δ ⊂ Hδ, τ ∈ Fδ ⊂ Hδ, j ∈ Z, v ∈ [0, 1) and v depends on β and t. The
eigenvalues and eigenfunctions of the operator Lt(q

δ) are

λj,β(v, τ ) = |β + τ |2 + µj(v), �j,β(x) = ei〈β+τ,x〉ϕj,v(ζ ) for j ∈ Z, β ∈ �δ. (10)

We say that the large quasimomentum (9) lies near the diffraction hyperplane (8) if

1

2
ρ < |β| <

3

2
ρ, j = O(ρα1), αk = 3kα, α = 1

4(3d(d + 1))
, (11)

3
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where ρ is a large parameter and k = 1, 2, . . . , d. In this paper, we construct a set of the
quasimomentum near the diffraction plane Dδ such that if β + τ + (j + v)δ (see (9)) belongs
to this set, then there exists a unique eigenvalue, denoted by �j,β(v, τ ), of Lt(q) satisfying

�j,β(v, τ ) = λj,β(v, τ ) + O(ρ−a), (12)

�j,β(v, τ ) = λj,β(v, τ ) +
1

4

∫
F

∣∣f 2
δ,β+τ

∣∣|ϕj,v|2 dx + O(ρ−3a+2α1 ln ρ), (13)

where a = 1 − αd + α and

fδ,β+τ (x) =
∑

γ :γ∈�\δR,|γ |<ρα

γ

〈β + τ, γ 〉qγ ei〈γ,x〉.

This is a simple eigenvalue and the corresponding eigenfunction 	j,β(x) satisfies

	j,β(x) = �j,β(x) + O(ρ−a). (14)

The remainders of the formulae (12), (13), (14) are O(ρ−a),O(ρ−3a+2α1 ln ρ) and O(ρ−a),
respectively, while the remainders of the corresponding formulae, obtained in [10], are
O(ρ−α2),O(ρ−2α2(ln ρ)4) and O(ρ−α2 ln ρ) (see (3.39, (3.52) and (6.23) of [10]), where
a > 1 − 1

4(d+1)
and −3a + 2α1 < −2, but α2 is a small number (see (11)). Moreover, the

second term of (13) has an explicit and a suitable form for the constructive determination of
new invariants. Besides, we prove that the derivative of �j,β(v, τ ) in the direction of h = β+τ

|β+τ |
satisfies

|β + τ |∂�j,β(v, τ )

∂h
= |β + τ |2 + O(ρ2−2a) (15)

and the derivative of the other simple eigenvalues, neighboring with �j,β(v, τ ), does not
satisfy (15). Using these formulae, we constructively determine the eigenvalues of Tv for
v ∈ [0, 1) and the invariants (4), (7). Then, using the asymptotic formulae for the eigenvalues
and the eigenfunctions of Tv, we find A0(ζ ), A1(ζ ) and A2(ζ ) (see (7)) and the invariants∫

F

|qδ,b(x)|2qδ(x) dx, (16)

∫
F

|qδ(x)|2 dx (17)

(see appendix D). If the potential q is a trigonometric polynomial, then most of the directional
potentials have the form

qδ(x) = qδ ei〈δ,x〉 + q−δ e−i〈δ,x〉. (18)

In this case, by direct calculations, we show that (see appendix D)

A0 = 1, A1 = 0, A2 = qδ(x)

2
+ a1 |qδ|2 , A3 = a2q

δ(x) + a3|qδ|2,

A4 = a4q
δ(x) + a5

(
q2

δ ei2〈δ,x〉 + q2
−δ e−i2〈δ,x〉) + a6,

(19)

where a1, a2, . . . , a6 are the known constants. Moreover using (19), (17), and (7) for k = 2, 4,

we find the invariant∫
F

|qδ,b(x)|2(q2
δ ei2〈δ,x〉 + q2

−δ e−i2〈δ,x〉) dx (20)

in case (18). In a subsequent paper, we give an algorithm for finding the potential q by the
invariants (16), (17), and (20).

4
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2. The proofs of the main results

In this section, we give the proofs of the main results without getting the technical details.
The technical details, namely the proof of the lemmas and some estimations, are given in
section 3 and in appendices , respectively. To obtain the asymptotic formulae for large
eigenvalues, we introduce a large parameter ρ. If the considered eigenvalue is of order ρ2,

then we write the potential q ∈ Ws
2 (F ) in the form

q(x) =
∑

γ∈�(ρα)

qγ ei〈γ,x〉 + O(ρ−pα), (21)

where p = s − d, �(ρα) = {γ ∈ � : 0 < |γ | < ρα)} and α is defined in (11). Note that the
relation q ∈ Ws

2 (F ), which means that (1) holds, implies that if s � d, then

∑
γ∈�

|qγ | < c1, sup

∣∣∣∣∣∣
∑

γ /∈�(ρα)

qγ ei〈γ,x〉

∣∣∣∣∣∣ �
∑

|γ |�ρα

|qγ | = O(ρ−pα), (22)

i.e., (21) holds. Here and in subsequent estimations, we denote by ci (i = 1, 2, . . .) the
positive, independent of ρ, constants.

First, let us describe some results of [10] that we use in this paper. In [10], we constructed
a set Bδ, which is called a simple set near the diffraction plane Dδ (see (8)), such that if the
quasimomentum γ + t = β + τ + (j + v)δ (see (9)) belongs to the simple set Bδ, then there
exists a unique eigenvalue �N , which is simple, of Lt(q) satisfying

|�N − E(λj,β(v, τ ))| < ε1

(see theorem 6.1 and formula (6.2) of [10]), where ε1 = ρ−d−2α and E(λj,β(v, τ )) is called
the known part of �N . Besides, we prove that all other eigenvalues of the operator Lt(q) lie
in the ε1 neighborhood of the numbers F(γ ′ + t) and λj (γ

′ + t), where γ ′ ∈ �, which are
called as the known parts of the other eigenvalues. In order that �N does not coincide with
the other eigenvalues, we use the following two simplicity conditions

|E(λj,β(v, τ )) − F(γ ′ + t)| � 2ε1, |E(λj,β(v, τ )) − λi(γ
′ + t)| � 2ε1. (S.C.)

Briefly, Bδ is the set of β + τ + (j + v)δ satisfying (S.C.). Thus we constructed the set Bδ

by eliminating the set of quasimomenta γ + t ≡ β + τ + (j + v)δ for which the known part
E(λj,β(v, τ )) of the corresponding eigenvalue is situated from the known parts of the other
eigenvalues at a distance less than 2ε1. Then, we investigated the set Bδ. By (9), every vector w

of R
d has decomposition w = γ +t ≡ β+τ +(j +v)δ, where β ∈ �δ, τ ∈ Fδ, j ∈ Z, v ∈ [0, 1).

In [10] (see the formula (6.45), theorems 3.1 and 6.1 of [10]), we proved that if

j ∈ S1(ρ), β ∈ S2(ρ), v ∈ S3(β, ρ), τ ∈ S4(β, j, v, ρ), (23)

then β + τ + (j + v)δ ∈ Bδ and hence there exists a unique eigenvalue �N , which is simple,
of Lt(q) satisfying

�N = λj,β(v, τ ) + O(ρ−α2) (24)

and the corresponding eigenfunction 	N,t (x) satisfies

	N,t (x) = �j,β(x) + O(ρ−α2 ln ρ), (25)

where α2 is defined in (11) and the set S1, S2, S3, S4 are defined as follows:

S1(ρ) =
{
j ∈ Z : |j | <

ρα1

2|δ|2 − 3

2

}
,

S2(ρ) =
⎧⎨
⎩β ∈ �δ : β ∈

(
Rδ

(
3

2
ρ − dδ − 1

)∖
Rδ

(
1

2
ρ + dδ + 1

))∖( ⋃
b∈�δ(ρ

αd )

V δ
b

(
ρ

1
2
))⎫⎬⎭ ,

(26)

5
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where dδ = supx,y∈Fδ
|x − y|, Rδ(c) = {x ∈ Hδ : |x| < c}, �δ(c) = {b ∈ �δ : 0 < |b| < c},

V δ
b (c) = {x ∈ Hδ : ||x + b|2 − |x|2| < c}.

For β ∈ S2(ρ), the set S3(β, ρ) is defined by

S3(β, ρ) = W(ρ)\A(β, ρ), (27)

where W(ρ) ≡ {v ∈ (0, 1) : |µj(v) − µj ′(v)| > 2
ln ρ

,∀ j ′, j ∈ Z, j ′ 	= j},

A(β, ρ) =
⋃

b∈�δ(ρ
αd )

A(β, b, ρ),

and A(β, b, ρ) = {v ∈ [0, 1) : ∃j ∈ Z, |2〈β, b〉 + |b|2 + |(j + v)δ|2| < 4dδρ
αd }.

For j ∈ S1(ρ), β ∈ S2(ρ), v ∈ S3(β, ρ), the set S4(β, j, v, ρ) is the set of τ ∈ Fδ for
which β + τ + (j + v)δ ∈ Bδ . In other words, S4(β, j, v, ρ) is the set of τ ∈ Fδ for which
E(λj,β(v, τ )) satisfies the simplicity conditions (S.C.). Since the functions taking part in
(S.C.) are measurable, S4(β, j, v, ρ) is a measurable set. In [10] (see (6.48) of [10]), we
proved that

µ(S4(β, j, v, ρ)) = µ(Fδ)(1 + O(ρ−α)). (28)

Remark 1. If (23) holds, then there exists a unique index N(j, β, v, τ ) , depending on
j, β, v, τ, for which the eigenvalue �N(j,β,v,τ )(t) satisfies (24). Instead of N(j, β, v, τ ), we
write N(j, β) (or N) if v, τ (or j, β, v, τ ) are unambiguous. In the asymptotic formulae (12)–
(15), instead of �N(j,β,v,τ ) and 	N(j,β,v,τ ),t (x), we write �j,β(v, τ ) and 	j,β(x), respectively,
in order to underline that �j,β(v, τ ) and 	j,β(x) are close to λj,β(v, τ ) and �j,β(x), where
λj,β(v, τ ) and �j,β(x) are defined in (10).

To prove the asymptotic formulae (12)–(14), which are suitable for the constructive
determination of the spectral invariants, we put an additional condition on β, namely, we
suppose that

β /∈
⋃

b∈�δ(pρα)

V δ
b (ρa), (29)

where V δ
b (ρa) and �δ(pρα) are defined in (26). By definition of V δ

b (ρa), the relation (29)
yields

||β|2 − |β + β1|2| � ρa, ∀β1 ∈ �δ(pρα). (30)

Using the inequalities |β1| < pρα, |τ | < dδ, a > 2α (see (13)), we obtain

||β + τ |2 − |β + β1 + τ |2| > 8
9ρa, ∀β1 ∈ �δ(pρα). (31)

Now we prove (12) by using (23), (31), and the following relation

(�N(t) − λj,β)b(N, j, β) = (	N,t , (q − qδ)�j,β), (32)

which can be obtained from Lt(q)	n,t (x) = �n(t)	n,t (x) by multiplying by �j,β(x) and
using Lt(q

δ)�j,β(x) = λj,β�j,β(x), where b(N, j, β) = (	N,t , �j,β) and (·, ·) is the inner
product in L2(R

d). In [10], using (21), we proved that (see (3.22) and (3.23) of [10]) if
|jδ| < r, |β| > 1

2ρ, where r � r1 and r1 = ρα1

2|δ| + 2|δ|, then the following decomposition

(q(x) − qδ(x))�j,β(x) =
∑

(j1,β1)∈Q(ρα,9r)

A(j, β, j + j1,β + β1)�j+j1,β+β1(x) + O(ρ−pα) (33)

6
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of (q(x) − qδ(x))�j,β(x) by eigenfunction of Lt(q
δ) holds, where

Q(ρα, 9r) = {(j, β) : |jδ| < 9r, 0 < |β| < ρα} and∑
(j1,β1)∈Q(ρα,9r)

|A(j, β, j + j1,β + β1)| < c2. (34)

Using this decomposition in (32), we get

(�N(t) − λj,β)b(N, j, β) = O(ρ−pα)

+
∑

(j1,β1)∈Q(ρα,9r)

A(j, β, j + j1,β + β1)b(N, j + j1, β + β1). (35)

Remark 2. If |j ′δ| < r, |β ′| > 1
2ρ and |�N − λj ′,β ′ | > c(ρ), then by (35) we have

b(N, j ′, β ′) =
∑

(j1,β1)∈Q(ρα,9r)

A(j ′, β ′, j ′ + j1, β
′ + β1)b(N, j ′ + j1, β

′ + β1)

�N − λj ′,β ′
+ O

(
1

ρpαc(ρ)

)
.

If j ∈ S1(ρ), then |jδ| < r1 = O(ρα1) and in (35) instead of r we take r1.

Theorem 1. If (23) and (29) hold, then there exists a unique eigenvalue �j,β(v, τ ), which is
simple, of Lt(q) satisfying (12).

Proof. Since there exists a unique eigenvalue �N(t) satisfying (24) and the corresponding
eigenfunction satisfies (25) (see remark 1), we have b(N, j, β) = 1+O(ρ−α2 ln ρ). Therefore,
we need to prove that the right-hand side of (35) is O(ρ−a). First, we show that

b(N, j + j1, β + β1) = O(ρ−a) (36)

for β1 ∈ �δ(pρα), j = o(ρ
a
2 ), j1 = o(ρ

a
2 ). For this, we prove the inequality

|�N(t) − λj+j1,β+β1 | > 1
2ρa, ∀β1 ∈ �δ(pρα), ∀ j = o

(
ρ

a
2
)
, ∀ j1 = o

(
ρ

a
2
)

(37)

and use the formula

b(N, j + j1, β1 + β) = (	N,t , (q − qδ)�j+j1,β1+β),

�N − λj+j1,β1+β

(38)

which can be obtained from (32) by replacing the indices j, β with j + j1, β + β1. By (24), the
inequality (37) holds if

|µj(v) + |β + τ |2 − µj+j1(v) − |β + β1 + τ |2| > 5
9ρa.

This inequality can easily be obtained by using (31), the equalities j = o(ρ
a
2 ), j + j1 = o(ρ

a
2 )

(see the conditions on j, j1 in (36), (37)) and the formula

µn(v) = |(n + v)δ|2 + O(n−1) (39)

(see [1, 6]). Note that the set of the eigenvalues of Tv(0) with zero potential is a sequence
{|(n+v)δ|2 : n ∈ Z} and it is not hard to see that the set of the eigenvalues of Tv can be written
as a sequence {µn(v) : n ∈ Z} satisfying (39). Thus (36) is proved. Using (36), the definition
of Q(ρα, 9r1), and the relations r1 = O(ρα1) (see remark 2), α1 < a

2 (see (11), (13)), we
obtain that all multiplicands b(N, j + j1, β + β1) in the right-hand side of (35), in the case
r = r1, are O(ρ−a). Hence, (34) implies that the right-hand side of (35) is O(ρ−a). �

To prove the asymptotic formula (13), we iterate (35) , in the case r = r1, as follows.
If |jδ| < r1, then the summation in (35) is taken under condition (j1, β1) ∈ Q(ρα, 9r1) (see

7
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remark 2). By the definition of Q(ρα, 9r1), we have |j1δ| < 9r1. Hence, |(j + j1)δ| < r2,

where r2 = 10r1. Therefore, using (37) and remark 2, we get

b(N, j + j1, β1 + β) =
∑

(j2,β2)∈Q(ρα,9r2)

A(j (1), β(1), j (2), β(2))b(N, j (2), β(2))

�N − λj+j1,β+β1

+ O(ρ−pα),

where j (k) = j + j1 + j2 + · · · + jk, β(k) = β + β1 + β2 + · · · + βk for k = 0, 1, 2, . . . . Using
this in (35), we obtain

(�N − λj,β)b(N, j, β) = O(ρ−pα)

+
∑

(j1,β1)∈Q(ρα,9r1)
(j2,β2)∈Q(ρα,9r2)

A(j, β, j (1), β(1))A(j (1), β(1), j (2), β(2))b(N, j (2), β(2))

�N − λj+j1,β+β1

. (40)

To prove (13), we use this formula and the following lemma.

Lemma 1. Suppose (23) and (29) hold. If j ′ 	= j, |j ′δ| < r, where r = O(ρ
1
2 α2), r � r1, and

r1 = ρα1

2|δ| + 2|δ|, then b(N(j, β), j ′, β) = O(ρ−2ar2 ln ρ).

Theorem 2. If (23) and (29) hold, then there exists a unique eigenvalue �j,β(v, τ ), which is
simple, of Lt(q) satisfying (13).

Proof. We prove this by using (40). To estimate the summation in the right-hand side of
(40), we divide the terms in this summation into three groups. The terms of the first, second
and third groups are the terms with multiplicands b(N, j, β), b(N, j (2), β) with j (2) 	= j,

and b(N, j (2), β(2)) with β(2) 	= β, respectively. The sum of the terms of the first group is
C1(�N)b(N, j, β), where

C1(�N) =
∑

(j1,β1)∈Q(ρα,9r1)

A(j, β, j + j1,β + β1)A(j + j1, β + β1, j, β)

�N − λj+j1,β+β1

. (41)

The sum of the terms of the second group is∑
(j1,β1)∈Q(ρα,9r1)
(j2,β2)∈Q(ρα,9r2)

A(j, β, j + j1,β + β1)A(j + j1, β + β1, j (2), β)

�N − λj+j1,β+β1

b(N, j (2), β),

where j (2) 	= j. Since r2 = 10r1 = O(ρα1) (see remark 2), the conditions on j, j1, j2 and
lemma 1 imply that j (2) = O(ρα1) and b(N, j (2), β) = O(ρ−2a+2α1 ln ρ). Using this, (34)
and (37), we obtain that the sum of the terms of the second group is O(ρ−3a+2α1 ln ρ). The
sum of the terms of the third group is∑
(j1,β1)∈Q(ρα,9r1)
(j2,β2)∈Q(ρα,9r2)

A(j, β, j (1), β(1))A(j (1), β(1), j (2), β(2))

�N − λj+j1,β+β1

b(N, j (2), β(2)), (42)

where β(2) 	= β. Using (37) and remark 2, we get

b(N, j (2), β(2)) =
∑

(j3,β3)∈Q(ρα,9r3)

A(j (2), β(2), j (3), β(3))b(N, j (3), β(3))

�N − λj(2),β(2)

+ O(ρ−pα),

where r3 = 10r2. Substituting it into (42) and isolating the terms with multiplicands b(N, j, β),

we see that the sum of the terms of the third group is

8
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C2(�N)b(N, j, β) + C3(�N) + O(ρ−pα), where

C2(�N)=
∑

(j1,β1)∈Q(ρα,9r1),
(j2,β2)∈Q(ρα,90r1)

A(j, β, j (1), β(1))A(j (1), β(1), j (2), β(2))A(j (2), β(2), j, β)

(�N − λj+j1,β+β1)(�N − λj(2),β(2))
,

C3(�N)=
∑

(j1,β1)∈Q(ρα,9r1)
(j2,β2)∈Q(ρα,9r2),
(j3,β3)∈Q(ρα,9r3)

(∏
k=1,2,3A(j (k − 1), β(k − 1), j (k), β(k))

)
b(N, j (3), β(3))

(�N − λj(1),β(1))(�N − λj(2),β(2))
,

(43)

and (j (3), β(3)) 	= (j, β). By (36) and lemma 1, b(N, j (3), β(3)) = O(ρ−a) for
(j (3), β(3)) 	= (j, β). Using this, (34), and taking into account that

|�N(t) − λj(1),β(1)| > 1
3ρa, |�N(t) − λj(2),β(2)| > 1

3ρa

for β(1) 	= β , β(2) 	= β (see (37)), we obtain C3(�N) = O(ρ−3a). The estimations of the
terms of the first, second and third groups imply that the formula (40) can be written in the
form

(�N − λj,β)b(N, j, β) = (C1(�N) + C2(�N))b(N, j, β) + O(ρ−3a+2α1 ln ρ), (44)

where N = N(j, β, v, τ ),�N(j,β,v,τ ) = �j,β(v, τ ) (see remark 1). Therefore, dividing both
parts of (44) by b(N, j, β), where b(N, j, β) = 1 + o(1) (see (25)), we get

�j,β = λj,β + C1(�j,β)) + C2(�j,β)) + O(ρ−3a+2α1 ln ρ). (45)

The calculations in appendices C and B show that

C1(�j,β(v, τ )) = 1

4

∫
F

|fδ,β+τ (x)|2|ϕj,v(〈δ, x〉)|2 dx + O(ρ−3a+2α1), (46)

C2(�j,β(v, τ )) = O(ρ−3a+2α1). (47)

Therefore, (13) follows from (45). �

Theorem 3. If (23) and (29) hold, then the eigenfunction 	j,β(x) corresponding to the
eigenvalue �j,β(v, τ ), where �j,β(v, τ ) is defined in theorem 1, satisfies (14).

Proof. To prove (14), we need to show that∑
(j ′,β ′):(j ′,β ′)	=(j,β)

|b(N(j, β), j ′, β ′)|2 = O(ρ−2a). (48)

In [10] (see (6.36) of [10]), we proved that∑
(j ′,β ′)∈Sc(k−1)

|b(N, j ′, β ′)|2 = O(ρ−2kα2(ln ρ)2), (49)

where Sc(n) = K0\S(n),K0 = {(j ′, β ′) : j ′ ∈ Z, β ′ ∈ �δ, (j
′, β ′) 	= (j, β)},

S(n) = {(j ′, β ′) ∈ K0 : |β − β ′| � nρα, |j ′δ| < 10nh}, h = O
(
ρ

1
2 α2
)

and k can be
chosen such that kα2 > a, k < p. Therefore, it is enough to prove that∑

(j ′,β ′)∈S(k−1)

|b(N, j ′, β ′)|2 = O(ρ−2a). (50)

Using (37), (38), the definition of S(k − 1) and the Bessel inequality for the basis

9
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{�j ′,β ′(x) : j ′ ∈ Z, β ′ ∈ �δ}, we have∑
(j ′,β ′):(j ′,β ′)∈S(k−1),β ′ 	=β

|b(N, j ′, β ′)|2 =
∑

(j ′,β ′)

|(	N(q − qδ),�j ′,β ′)|2
|�N − λj ′,β ′ |2 = O(ρ−2a). (51)

In the case β ′ = β, j ′ 	= j, using lemma 1 (we can use it since |j ′δ| = O(ρ
1
2 α2) for

(j ′, β ′) ∈ S(k − 1)), we obtain∑
(j ′,β)∈S(k−1),j ′ 	=j

|b(N, j ′, β)|2 = O(ρ−4a+2α2(ln ρ)2)K, (52)

where K is the number of j ′ satisfying (j ′, β) ∈ S(k − 1). It is clear that K = O(ρ
1
2 α2). Since

α2 < a
2 (see (11), (13)), the right-hand side of (52) is O(ρ−2a). Thus (52), (51) give (50). �

Now we estimate the derivative of �N(t) by using the following lemma.

Lemma 2. Let �N(β + τ + vδ), be a simple eigenvalue of Lt satisfying

|�N(β + τ + vδ) − |β + τ |2| < |δ|−2ρα1 (53)

where α1 is defined in (11), β satisfies (23) and β + τ + vδ − t ∈ �. Then

|β + τ |∂�N(t)

∂h
=

∑
j ′∈Z,β ′∈�δ

〈β + τ, β ′ + τ 〉|b(N, j ′, β ′)|2, (54)

where ∂�N(t)

∂h
is the derivative of �N(t) in the direction of h = β+τ

|β+τ | . Moreover,

|b(N, j ′, β ′)| � c3

(|β ′ + τ |2 + |(j ′ + v)δ|2)|β ′ + τ |2d+6
(55)

for all β ′ satisfying |β ′ + τ | � 4ρ and for all j ′ ∈ Z .

Theorem 4. If (23) and (29) hold, then the eigenvalue �j,β(v, τ ), defined in theorem 1,
satisfies (15).

Proof. It follows from (55), (48), (14) that∑
j ′∈Z,|β ′+τ |�4ρ

〈β + τ, β ′ + τ 〉|b(N, j ′, β ′)|2 = O(ρ2−2a),

∑
j ′∈Z,|β ′+τ |<4ρ,(j ′,β ′)	=(j,β)

〈β + τ, β ′ + τ 〉|b(N, j ′, β ′)|2 = O(ρ2−2a),

〈β + τ, β + τ 〉|b(N, j, β)|2 = |β + τ |2 + O(ρ2−2a),

where N = N(j, β, v, τ ),�N(j,β,v,τ ) = �j,β(v, τ ) (see remark 1). Therefore (15) follows
from (54). �

To prove the main results of this paper we need the following lemmas.

Lemma 3. If �N(β + τ + vδ) is a simple eigenvalue of Lt(q) satisfying
|�N(β + τ + vδ) − |β + τ |2| < 2ρα,N 	= N(j, β, v, τ ), where β + τ + vδ − t ∈ �, α is

defined in (11), j, β, v, τ satisfy (23), (29), then

|β + τ |∂�N(t)

∂h
< |β + τ |2 − 1

4
ρ2αd .

The proof of this lemma is given in section 3. Here we note some reasons of the proof. It
follows from (48) that

|b(N, j, β)|2 = 1 + O(ρ−2a) for N = N(j, β). (56)

Since ‖�j,β(x)‖ = 1, using the Parseval’s equality for the orthonormal basis

10
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{	N(x) : N = 1, 2, . . . , } and (56), we get

|b(N, j, β)|2 = O(ρ−2a), ∀N 	= N(j, β). (57)

This with the long estimations of the other terms of the series of the right-hand side of (54)
implies the proof of lemma 3.

Lemma 4. Let b be a visible element of �δ and v ∈ (0, 1
2

) ∪ ( 1
2 , 1
)
. Then there exists ρ(v)

such that if ρ � ρ(v), then there exists β ∈ S2(ρ) satisfying (29), the relation v /∈ A(β, ρ)

and the inequalities

1

3
|ρ|a < |〈β + τ, b〉| < 3|ρ|a, (58)

|〈β + τ, γ 〉| >
1

3
|ρ|a, ∀ γ ∈ S(δ, b)\δR, (59)

|〈β + τ, γ 〉| >
1

3
|ρ|a+2α, ∀ γ 	∈ S(δ, b), |γ | < |ρ|α , (60)∫

F

|fδ,β+τ (x)|2|ϕn,v(〈δ, x〉)|2 dx < c4ρ
−2a (61)

for τ ∈ Fδ, where S2, A(β, ρ), fδ,β+τ , S(δ, b) are defined in (26), (27), (13), (5).

Theorem 5. Suppose q ∈ Ws
2 (F ), where Ws

2 (F ) is defined by (1), s � 6(3d(d + 1)2) + d, and
the band functions are known. Then the spectral invariants µj(v) for j ∈ Z, v ∈ [0, 1) and
(4), (7), (16), (17), (20) can be determined constructively.

Proof. Let j ∈ Z and v ∈ (0, 1
2

) ∪ ( 1
2 , 1
)
. In [10] (see lemma 3.7 of [10]) we proved that(

ε(ρ), 1
2 −ε(ρ)

)∪( 1
2 +ε(ρ), 1−ε(ρ)

) ⊂ W(ρ), where W(ρ) is defined in (27) and ε(ρ) → 0
as ρ → ∞. Therefore v ∈ W(ρ) for ρ � 1. On the other hand, by lemma 4, there exists
β ∈ S2(ρ) such that (29), the relation v /∈ A(β, ρ) and (58)–(61) hold. Then v ∈ S3(β, ρ)

(see (27)). Thus j, β, v satisfy (23) and β satisfies (29), (58)–(61) for ρ � 1. Replacing ρ

by ρk ≡ 3kρ for k = 1, 2, . . . , in the same way, we obtain the sequence β1, β2, . . . , such
that βk ∈ S2(ρk), v ∈ S3(βk, ρk) and the relations obtained from (29), (58)–(61) by replacing
β, ρ with βk, ρk hold. Now take τ from Fδ and consider the band functions �N(βk + τ + vδ)

for N = 1, 2, . . . . Let Ak(v) be the set of all τ ∈ Fδ for which there exists N satisfying the
conditions:

|�N(βk + τ + vδ) − |βk + τ |2| < (ρk)
α
2 , (62)

�N(βk + τ + vδ) is a simple eigenvalue, (63)

||βk + τ |∂�N(βk + τ + vδ)

∂h
− |βk + τ |2| < ρ2−2a+α

k , (64)

where h = βk+τ

|βk+τ | . By (12), (39) and theorem 4, �j ′,βk
(v, τ ) for |j ′| < ρ

α
5
k and for

βk ∈ S2(ρk), βk /∈
⋃

b∈�δ(pρα
k )

V δ
b (ρa

k ), v ∈ S3(βk, ρk), τ ∈ S4(βk, j
′, v, ρk)

(65)

satisfy the conditions (62)–(64). Therefore S4(βk, j
′, v, ρk) ⊂ Ak(v) for |j ′| < ρ

α
5
k and hence

Ak(v) is not an empty set. Moreover , it follows from (63) that �N(βk +τ +vδ) and ∂�N(βk+τ+vδ)

∂h

are measurable functions of τ and hence Ak(v) is a measurable set. Let

�N1(βk + τ + vδ) < �N2(βk + τ + vδ) < · · · < �Nn(k)
(βk + τ + vδ) (66)

11
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be the eigenvalues of Lt satisfying (62)–(64). Using theorem 4 and lemma 3, we see that if
(65) holds for j ′ ∈ S1(ρk), then there exist (j1, βk), (j2, βk), . . . , (jn(k), βk) such that

Ni = N(ji, βk) for i = 1, 2, . . . , n(k), i.e.,

�Ni
(βk + τ + vδ) = �ji,βk

(v, τ ) for i = 1, 2, . . . , n(k) (67)

(see remark 1). Let µj(v) be i(j)th eigenvalue of the operator Tv if the eigenvalues of
Tv are numbered in the increasing order. (Note that the eigenvalues of the operator Tv for
v ∈ (0, 1

2

) ∪ ( 1
2 , 1
)

are simple (see [6])). Using (66), (67) and (12), (13) we obtain that if k is
a large number and (65) holds for all j ′ such that µj ′ � µj , then

�Ni(j)
(βk + τ + vδ) = |βk + τ |2 + µj(v) + O

(
ρ−a

k

)
, (68)

�Ni(j)
(βk + τ + vδ) = |βk + τ |2 + µj(v) +

1

4

∫
F

∣∣f 2
δ,βk+τ

∣∣|ϕj,v|2 dx + O
(
ρ

−3a+2α1
k ln ρk

)
. (69)

For τ ∈ Ak(v), take i(j)th element �Ni(j)
(βk + τ + vδ) (see (66)) of the set of the eigenvalues

satisfying (62)–(64) and consider the integral

J (Ak) = 1

µ(Fδ)

∫
Ak(v)

(�Ni(j)
(βk + τ + vδ) − |βk + τ |2) dτ.

This integral is a sum of J (S ′
4) and J (Ak(v)\S ′

4), where S ′
4 denotes the intersection of

S4(βk, j
′, v, ρk) for all j ′ such that µj ′ � µj . If τ ∈ S ′

4 and k is a large number, then
(68) holds. Thus, using (68) and (28) for ρ = ρk , we get J (S ′

4) = µj(v) + O(ρ−α
k ). On the

other hand, the inclusion Ak(v) ⊂ Fδ, (28), and (62) imply that µ(Ak(v)\S ′
4) = O

(
ρ−α

k

)
and J

(
Ak(v)\S ′

4

) = O
(
ρ

− α
2

k

)
. These equalities yield J (Ak(v)) = µj(v) + O(ρ

− α
2

k ). Letting
k → ∞, we find µj(v) for j ∈ Z and v ∈ (0, 1

2

)∪ ( 1
2 , 1
)
. Since µj(0) and µj

(
1
2

)
are the end

points of the interval
{
µj(v) : v ∈ (0, 1

2

)}
, the invariant µj(v) is determined constructively for

all v ∈ [0, 1). In appendix D, we constructively determine (17) from the asymptotic formulae
for µj(v).

Now using (69) and taking into account that the invariants µj(v) are determined, we
determine the invariant (4) as follows. Let B(βk, v) be the set of τ ∈ Fδ for which there exists
N satisfying (63), (64) and

|�N(βk + τ + vδ) − |βk + τ |2 − µj(v)| < ρ
−2a+ α

2
k . (70)

For τ ∈ B(βk, v), take one of the eigenvalues �N(βk + τ + vδ) satisfying (63), (64), (70) and
consider

J ′(B(βk, v)) = |〈βk + τ, b〉|2
µ(Fδ)|b|4

∫
B(βk,v)

(�N(βk + τ + vδ) − |βk + τ |2 − µj(v)) dτ.

This integral is a sum of J ′(S4) and J ′(B(βk, v)\S4). If τ ∈ S4 and k is a large number, then
arguing as above and taking into account that µj(v) is a simple eigenvalue, we see that only
the eigenvalue �Ni(j)

(βk + τ + vδ) (see (69)) satisfies (63), (64), (70). Hence, in J ′(S4) instead
of �N(βk + τ + vδ) we must take�Ni(j)

(βk + τ + vδ). Therefore, using (69), we get

J ′(S4) = |〈βk + τ, b〉|2
4µ(Fδ)|b|4

∫
S4

∫
F

∣∣fδ,βk+τ (x)ϕj,v(〈δ, x〉)∣∣2 dx dτ + O
(
ρ

2α1−a
k ln ρ

)
. (71)

Moreover, using (70), (58) and µ(B(βk, v)\S4) = O
(
ρ−α

k

)
(see (28)), we obtain

J ′(B(βk, v)\S4) = O
(
ρ

− α
2

k

)
. (72)

12
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Substituting the decomposition |δ|−2〈γ, δ〉δ + |b|−2〈γ, b〉b of γ for γ ∈ S(δ, b), |γ | < |ρk|α
into the denominator of the fraction in fδ,βk+τ (x) (for definition of this function see (13)) and
using (58), (60), we have

lim
k→∞

|b|−2〈βk + τ, b〉fδ,βk+τ (x) =
∑

γ∈S(δ,b)\δR

γ

〈γ, b〉qγ e〈γ,x〉 ≡ qδ,b(x), (73)

where qδ,b(x) is defined in (5) and the convergence of the series (5) is proved in the proof of
lemma 4. This, with (71) and (72), implies that

lim
k→∞

J ′(B(βk, v) =
∫

F

|qδ,b(x)|2|ϕj,v(〈δ, x〉)|2 dx ≡ J (δ, b, j, v) (74)

(see (4)). In (74), letting j → ∞ and using (6), we get the invariant J0(δ, b) (see (7)). Then,
we find the other invariants J1(δ, b), J2(δ, b), . . . , of (7) as follows

J1 = lim
j→∞

(J − J0)j, J2 = lim
j→∞

((J − J0)j
2 − J1j), . . . .

In appendix D, using the asymptotic formulae for the eigenfunctions of Tv(Q), we
constructively determine the invariants (16), (20) from (7) and (17) �

3. The proofs of the lemmas

The proof of lemma 1. To prove this lemma, we use the following formula obtained from
(40) by replacing j and r1 with j ′ and r, respectively,

(�N(j,β) − λj ′,β)b(N, j ′, β) = O(ρ−pα)

+
∑

(j1,β1)∈Q(ρα,9r)
(j2,β2)∈Q(ρα,90r)

A(j, β, j ′(1),β(1))A(j ′(1),β(1), j ′(2),β(2))b(N, j ′(2), β(2))

�N − λj ′+j1,β+β1

,

(75)

where j ′(k) = j ′ + j1 + j2 + · · · + jk for k = 0, 1, 2, . . . . By (36), we have

b(N, j ′(2), β(2)) = O(ρ−a) (76)

for β(2) 	= β. If j ′(2) 	= j, then using (12) and taking into account that
v ∈ S3(β, ρ) ⊂ W(ρ) (see the definition of W(ρ) in (27)), we obtain

|�N(j,β) − λj ′,β | >
1

ln ρ
. (77)

Therefore, using (34), remark 2 and (36), we see that b(N, j ′(2), β) = O(ρ−a ln ρ) for
j ′(2) 	= j. Using this, (34), and the estimations (37), (76), we see that the sum of the terms

of the right-hand side of (75) with multiplicand b(N, j ′(2), β(2)) for (j ′(2), β(2)) 	= (j, β)

is O(ρ−2a ln ρ). It means that formula (75) can be written in the form

(�N − λj ′,β)b(N, j ′, β) = O(ρ−2a ln ρ) + C1(j
′,�N)b(N, j, β), (78)

where

C1(j
′,�N) =

∑
(j1,β1)∈Q(ρα,9r)

A(j ′, β, j ′ + j1, β + β1)A(j ′ + j1, β + β1, j, β)

�N − λj ′+j1,β+β1

. (79)

By (12), (37), (34), we have 1
�N−λj ′+j1 ,β+β1

= 1
λj,β−λj ′+j1 ,β+β1

= O(ρ−3a),

C1(j
′,�N) = C1(j

′, λj,β) + O(ρ−3a), (80)

13
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where C1(j
′, λj,β) is obtained from C1(j

′,�N) by replacing �N with λj,β in the denominator
of the fractions in (79). In appendix A, we prove that

C1(j
′, λj,β) = O(ρ−2ar2) (81)

for |j ′δ| < r, (j1, β1) ∈ Q(ρα, 9r), j ∈ S1. Therefore, dividing both sides of (78) by �N−λj ′,β
and using (77), (80), (81), we get the proof of the lemma. �

The proof of lemma 2. We find the derivative of �N(t) by using

∂�N(t)

∂tj
= 2tj − 2i

(
∂

∂xj

�N,t ,�N,t

)
,

where �N,t (x) = e−i〈t,x〉	N,t (x), t = (t1, t2, . . . , td) (see (5.12) of [10]). Then,

∂�N(t)

∂h
=

d∑
j=1

hj

∂�N(t)

∂tj
= 2〈h, t〉 − 2i

(
∂

∂h
�N,t ,�N,t

)
. (82)

To compute ∂
∂h

�N,t (x), we prove that the decomposition

�N,t (x) =
∑

j ′∈Z,β ′∈�δ

b(N, j ′, β ′) ei〈β ′+τ−t,x〉ϕj ′(〈δ, x〉) (83)

of 	N,t by basis {	j,β : j ∈ Z, β ∈ �δ} can be differentiated term by term. Since 〈δ, h〉 = 0,

∂

∂h
ei〈β ′+τ−t,x〉ϕj ′(〈δ, x〉) = i〈β ′ + τ − t, h〉 ei〈β ′+τ−t,x〉ϕj ′(〈δ, x〉),

we need to prove that

∂

∂h
�N,t (x) =

∑
j ′∈Z,β ′∈�δ

i〈β ′ + τ − t, h〉b(N, j ′, β ′) ei〈β ′+τ−t,x〉ϕj ′(〈δ, x〉). (84)

Therefore, we consider the convergence of these series by estimating the multiplicand
b(N, j ′, β ′). First, we estimate this multiplicand for (j ′, β ′) ∈ E, where
E = {(j ′, β ′) : |(j ′ + v)δ|2 + |β ′ + τ |2 � 9ρ2}, by using the formula

b(N, j ′, β ′) = (	N,t , (q − qδ)�j ′,β ′),

�N − λj ′,β ′
(85)

which can be obtained from (38) by replacing j + j1, β + β1 with j ′, β ′. By (23), (53)

|�N | < 3ρ2. (86)

This inequality, the condition (j ′, β ′) ∈ E, definition of λj ′,β ′ , and (39) give

λj ′,β ′ − �N > 1
2 (|(j ′ + v)δ|2 + |β ′ + τ |2) > ρ2 (87)

for (j ′, β ′) ∈ E. Therefore, (85) implies that

|b(N, j ′, β ′)| � c5

|(j ′ + v)δ|2 + |β ′ + τ |2 , ∀ (j ′, β ′) ∈ E. (88)

Now we obtain the high-order estimation for b(N, j ′, β ′) when |β ′ + τ | � 4ρ. In this case, to
estimate b(N, j ′, β ′) we use the iterations of the formula in remark 2. To iterate this formula,
we use the relations |β ′ + τ −β1 −β2 −· · ·−βk|2 > 3

4 |β ′ + τ |2 for k = 1, 2, . . . , d + 3, where
|βi | < ρα for i = 0, 1, . . . , k. This and (86) give

λj ′(k),β ′(k) − �N > 1
5 |β ′ + τ |2, ∀ |β ′ + τ | � 4ρ, (89)

14
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where β ′(k) = β ′ + β1 + β2 + · · · + βk. Moreover, if |j ′δ| < c, where c is a positive number,
then (jk, βk) ∈ Q(ρα, 10k−19c). These conditions on j ′ and j1 imply that |j ′(1)δ| < 10c.

Therefore, in the formula in remark 2 replacing j ′, β ′, r by j ′(1), β ′(1), 10c, we get

b(N, j ′(1), β ′(1)) = O(ρ−pα) +
∑

(j2,β2)∈Q(ρα,90c)

A(j ′(1), β ′(1), j ′(2), β ′(2))b(N, j ′(2), β ′(2))

�N − λj ′(1),β ′(1)

.

In the same way, we obtain

b(N, j ′(k), β ′(k)) = O(ρ−pα)

+
∑

(jk+1,βk+1)∈Q(ρα,(10k)9c)

A(j ′(k), β ′(k), j ′(k + 1), β ′(k + 1))b(N, j ′(k + 1), β ′(k + 1))

�N − λj ′(k),β ′(k)

(90)

for k = 1, 2, . . . . In the formula in remark 2 for r = c, using this formula for k = 1, 2, . . . , d+3
successively, we get

b(N, j ′, β ′) =
∑(

d+3∏
i=0

A(j ′(i), β ′(i), j ′(i + 1), β ′(i + 1))

�N − λj ′(i),β ′(i)

)
b(N, j ′(d + 4), β ′(d + 4)),

(91)

where sum is taken under conditions
(j1, β1) ∈ Q(ρα, 9c), (j2, β2) ∈ Q(ρα, 90c), . . . , (jd+4, βd+4) ∈ Q(ρα, (10d+3)9c). Now

using (34), (87) and (89), we obtain the proof of (55). It follows from (88) and (55) that the
series in (83) can be term-by-term differentiated and (84) holds. Substituting (84) into (82)
and using the Parseval equality, by direct calculation, we obtain the proof of the lemma. �

The proof of lemma 3. By lemma 2, we have

|β + τ |∂�N(t)

∂h
=

∑
j ′∈Z,β ′∈�δ

〈β + τ, β ′ + τ 〉|b(N, j ′, β ′)|2 =
7∑

i=1

Ci, (92)

where

Ci =
∑
β ′∈Ai

∑
j ′∈Z

〈β + τ, β ′ + τ 〉|b(N, j ′, β ′)|2 (93)

and Ai is defined as follows:
A1 = {β ′ ∈ �δ : β ′ + τ /∈ Rδ(4ρ)}, where Rδ(c) = {x ∈ Hδ : |x| < c},
A2 = {β ′ ∈ �δ : β ′ + τ ∈ Rδ(4ρ)

∖
Rδ

(
H + 1

9ρa−1
)}

,

A3 = {β ′ ∈ �δ : β ′ + τ ∈ Rδ

(
H + 1

9ρa−1
)∖

Rδ(H + ραd−1), |β − β ′| � ρa−2α
}
,

A4 = {β ′ ∈ �δ : β ′ + τ ∈ Rδ

(
H + 1

9ρa−1
)∖

Rδ(H + ραd−1), |β − β ′| < ρa−2α
}
,

A5 = {β ′ ∈ �δ : β ′ + τ ∈ Rδ

(
H + ραd−1

)∖
Rδ(H − ρ2αd−1), |β − β ′| � ραd

}
,

A6 = {β ′ ∈ �δ : β ′ + τ ∈ Rδ

(
H + ραd−1

)∖
Rδ(H − ρ2αd−1), |β − β ′| < ραd

}
,

A7 = {β ′ ∈ �δ : β ′ + τ ∈ Rδ(H − ρ2αd−1)
}
, where H = |β + τ | , β ∈ S2(ρ), and hence

by the definition of S2(ρ) (see (26)), H satisfies the inequalities
1
2ρ < H < 3

2ρ. (94)

First, we prove that

Ci = O(ρ2−2a), ∀ i = 1, 2, 4, 6. (95)
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It follows from (55) that (95) holds for i = 1. To prove (95) for i = 2, we use (85) and show
that

λj ′,β ′ − �N(t) > c6ρ
a. (96)

First, let us prove (96). By the condition |�N(β + τ + vδ) − |β + τ |2| < 2ρα of the lemma, we
have

�N = H 2 + O(ρα). (97)

If β ′ ∈ A2, then using (94), definition of λj ′,β ′ and (39), we have

λj ′,β ′ > H 2 + c7ρ
a. (98)

This, (97), and the inequality a > α imply (96). Now using (96), (85), the inequalities
|β + τ | < 3

2ρ, |β ′ + τ | < 4ρ and the Bessel inequality, we get the proof of (95) for i = 2.

To prove (95) for i = 4, we use the inequality C4 < c8ρ
2(C4,1 + C4,2), where

C4,1 =
∑
β ′∈A4

∑
j ′:|j ′δ|� 1

30 ρ
a
2

|b(N, j ′, β ′)|2,

C4,2 =
∑
β ′∈A4

∑
j ′:|j ′δ|< 1

30 ρ
a
2

|b(N, j ′, β ′)|2,

and prove that

C4,i = O(ρ−2a), ∀ i = 1, 2. (99)

It is clear that if β ′ ∈ A4 and |j ′δ| � 1
30ρ

a
2 , then (98) holds. Therefore, repeating the proof of

(95) for i = 2, we get the proof of (99) for i = 1.

Now we prove (99) for i = 2. It follows from (85) that

C4,2 =
∑
β ′∈A4

∑
j ′:|j ′δ|< 1

30 ρ
a
2

|(	N, (q − qδ)�j ′,β ′)|2
|�N(t) − λj ′,β ′ |2 . (100)

Since αd > α, it follows from (97) that the inequality λj ′,β ′ − �N(t) > c9ρ
αd holds for

β ′ ∈ A4, |j ′δ| < ρ
a
2 . Therefore, using (39), we obtain∑

j ′:|j ′δ|< 1
30 ρ

a
2

1

|�N(t) − λj ′,β ′ |2 < c10, ∀β ′ ∈ A4, (101)

where c10 does not depend on β ′. Using this in (100) and denoting

|(	N, (q − qδ)�n(β ′),β ′)| = max
j ′:|j ′δ|< 1

30 ρ
a
2

|(	N, (q − qδ)�j ′,β ′)|

(if max is obtained for several index n(β ′), then we take one of them), we get

C4,2 < c11

∑
β ′∈A4

|(	N, (q − qδ)�n(β ′),β ′)|2.

Now using (33), (34) and then (85), we obtain

C4,2 < c12ρ
−pα + c12

∑
β ′∈A4

|b(N, n(β ′) + j1(β
′), β ′ + β1(β

′))|2

= c12ρ
−pα + c12

∑
β ′∈A4

|(	N, (q − qδ)�n(β ′)+j1(β ′),β ′+β1(β ′))|2
|�N − λn(β ′)+j1(β ′),β ′+β1(β ′)|2 , (102)
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where

|b(N, n(β ′) + j1(β
′), β ′ + β1(β

′))| = max
(j1,β1)∈Q(ρα,9 1

30 ρ
a
2 )

|b(N, n(β ′) + j1, β
′ + β1)|.

To estimate C4,2, let us prove that

|�N − λn(β ′)+j1(β ′),β ′+β1(β ′)| > 1
8ρa. (103)

The inclusion (j1, β1) ∈ Q(ρα, 9 1
30ρ

a
2 ) and the condition |j ′δ| < 1

30ρ
a
2 imply that

|n(β ′)δ + j1(β
′)δ| < 1

3ρ
a
2 and by (39) |µn(β ′)+j1(β ′)| < 1

8ρa. Therefore, by (97), to prove
(103) it is enough to show that

|H 2 − |β ′ + β1 + τ |2| > 3
8ρa, ∀β ′ ∈ A4, β1 ∈ �δ(pρα). (104)

Since ||β ′ + τ |2 − H 2| < 1
2ρa (see the definition of A4 and use (94)), we need to prove that

||β ′ + τ |2 − |β ′ + β1 + τ |2| > 7
8ρa, ∀β ′ ∈ A4, β1 ∈ �δ(pρα). (105)

Using |β − β ′| < ρa−2α (see definition of A4), by calculations, we get

|β ′ + τ |2 − |β ′ + β1 + τ |2 = −2〈β ′ + τ, β1〉 − |β1|2
= −2〈β + τ, β1〉 − |β1|2 − 2〈β ′ − β, β1〉 = −(|β + β1 + τ |2 − |β + τ |2) + o(ρa).

This and (31) imply that (105) and hence (103) holds. Now to estimate the right-hand side of
(102) we prove that if β ′ ∈ A4, β

′′ ∈ A4 and β ′ 	= β ′′, then

β ′ + β1(β
′) 	= β ′′ + β1(β

′′). (106)

Assume that they are equal. Then, we have β ′′ = β ′ + b, where b ∈ �δ(2ρα), since
β1(β

′) ∈ �δ(ρ
α), β1(β

′′) ∈ �δ(ρ
α). It easily follows from the inclusions

β ′ ∈ A4, β
′ + b ∈ A4 that ||β ′ + τ |2 − |β ′ + τ + b|2| < 1

2ρa which contradicts (105). Thus
(106) is proved. Therefore, using (102), (103) and the Bessel inequality, we obtain the proof
of (99) for i = 2. Hence (95) is proved for i = 4.

Now we prove (95) for i = 6. First, we note that A6 = {β}. Indeed, if β ′ 	= β and
β ′ ∈ A6, then we have β ′ = β + b, where b ∈ �δ(ρ

αd ), and from the relations β /∈ V δ
b

(
ρ

1
2
)

(see (23) and the definition of S2), |β + τ | = H, we obtain that ||β ′ + τ |2 − H 2| > 1
2ρ

1
2 which

contradicts the inclusion β ′ + τ ∈ Rδ(H + ραd−1). Hence,

C6 =
∑
j ′∈Z

〈β + τ, β + τ 〉|b(N, j ′, β)|2 = H 2
∑
j ′∈Z

|b(N, j ′, β)|2 = H 2
3∑

i=1

C6,i ,

where

C6,1 = |b(N, j, β)|2, C6,2 =
∑

|j ′δ|� 1
30 ρ

a
2

|b(N, j ′, β)|2,

C6,3 =
∑

|j ′δ|< 1
30 ρ

a
2 ,j ′ 	=j

|b(N, j ′, β)|2.

To prove (95) for i = 6, we show that

C6,i = O(ρ−2a), ∀ i = 1, 2, 3. (107)

By (57), this equality holds for i = 1. For |j ′δ| � 1
30ρ

a
2 , the inequality (96) holds. Therefore,

repeating the proof of (95) for i = 2, we get the proof of (107) for i = 2. Arguing as in the
proof of (99) for i = 2, we obtain the proof of (107) for i = 3. Thus, (95) is proved for i = 6.
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Now we prove that

Ci �
∑
β ′∈Ai

∑
j ′∈Z

|b(N, j ′, β ′)|2
(

H 2 − 1

3
ρ2αd

)
(108)

for i = 3, 5, 7. Consider the triangle generated by vectors β + τ, β ′ + τ, β − β ′. For β ′ ∈ A3,

we have H + ραd−1 � |β ′ + τ | � H + 1
9ρa−1, |β − β ′| � ρa−2α. Let θ be the angle between

the vectors β + τ, and β ′ + τ . If |θ | � π
2 , then using the cosine theorem, we get

|〈β + τ, β ′ + τ 〉| = 1
2 (|β + τ |2 + |β ′ + τ |2 − |β − β ′|2) < H 2 − 1

3ρ2αd ,

since a−2α > αd. Using this and taking into account that 〈β +τ, β ′ +τ 〉 < 0 for π
2 < |θ | � π,

we get the proof of (108) for i = 3. If β ′ ∈ A5, |θ | � π
2 , then|〈β + τ, β ′ + τ 〉| � H 2 − 1

3ρ2αd

and hence (108) holds for i = 5. If β ′ ∈ A7, then |β ′ + τ | � H − ρ2αd−1 and by (94) we
have |〈β + τ, β ′ + τ 〉| � H 2 − 1

3ρ2αd , i.e, (108) holds for i = 7 too. Now (108) and the Bessel
inequality imply that

C3 + C5 + C7 � H 2 − 1
3ρ2αd = |β + τ |2 − 1

3ρ2αd .

This, (95) and (54) give the proof of lemma 3, since 2 − 2a < 2αd (see (13)). �

The proof of lemma 4. Let n1 be a positive integer satisfying the inequality |(n1 + v)δ|2 �
4ρ1+αd < |(n1 + 1 + v)δ|2. Introduce the following sets

Db′,j (ρ, v, 4) = {x ∈ Hδ : |2〈x, b′〉 + |b′|2 + |(j + v)δ|2| < 4dδρ
αd },

D(ρ, v, 4) =
n1⋃

j=−n1−3

⋃
b′∈�δ(ρ

αd )

Db′,j (ρ, v, 4), (109)

S ′
2(ρ, b, v) = ((V δ

b (4ρa)
∖
V δ

b (ρa)
)∖(

D(ρ, v, 4) ∪ D1
(
ρ

1
2
) ∪ D2(ρ

a+2α)
)) ∩ D3, (110)

where

D1
(
ρ

1
2
) =

⋃
b′∈�δ

(
ραd

)V δ
b′
(
ρ

1
2
)
, D2(ρ

a+2α) =
⋃

b′∈�δ(pρα)\bR

V δ
b′(ρ

a+2α),

D3 = (R( 3
2ρ − dδ − 1

)∖
R
(

1
2ρ + dδ + 1

))
.

Now we prove that the set S ′
2(ρ, b, v) contains an element β ∈ �δ satisfying all assertions

of lemma 4. First, let us prove that S ′
2(ρ, b, v) ∩ �δ is a nonempty subset of S2(ρ), i.e.,

S ′
2(ρ, b, v) ∩ �δ ⊂ S2(ρ), S ′

2(ρ, b, v) ∩ �δ 	= ∅. (111)

It follows from the definitions of S ′
2(ρ, b, v) and S2(ρ) (see (23)) that the first relation of (111)

holds. To prove the second relation, we consider the set

D′(ρ) = (V δ
b (3ρa)

∖
V δ

b (2ρa))
∖(

D(ρ, v, 6) ∪ D1
(
2ρ

1
2
) ∪ D2(2ρa+2α)

)) ∩ D4,

where D4 = R
(

3
2ρ − 1

)∖
R
(

1
2ρ + 1

)
. If β + τ ∈ D′(ρ), where β ∈ �δ, τ ∈ Fδ, then

β ∈ S ′
2(ρ, b, v). Therefore, {β + Fδ : β ∈ S ′

2(ρ, b, v) ∩ �δ} is a cover of D′(ρ). Hence,

|S ′
2(ρ, b, v) ∩ �δ| � (µ(Fδ))

−1µ(D′(ρ)), (112)

where |S ′
2(ρ, b, v) ∩ �δ| is the number of elements of S ′

2(ρ, b, v) ∩ �δ. Thus, to prove the
second relation of (111) we need to estimate µ(D′(ρ)). It is not hard to verify that (see
remark 2.1 of [10])

µ
((

V δ
b (3ρa)

∖
V δ

b (2ρa)
) ∩ D4

)
> c13ρ

d−2+a. (113)
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Now we estimate µ
((

V δ
b (3ρa)

∖
V δ

b (2ρa)) ∩ D1
(
2ρ

1
2
) ∩ D4

)
. If b′ ∈ (bR)∩�δ(ρ

αd ), then one

can easily verify that V δ
b′
(
2ρ

1
2
) ∩ D4 ⊂ V δ

b (2ρa) ∩ D4. Therefore, we need to estimate the

measure of V δ
b (3ρa) ∩ V δ

b′
(
2ρ

1
2
) ∩ D4 for b′ ∈ �δ(ρ

αd )\bR. For this, we turn the coordinate
axes so that the direction of(1, 0, 0, . . . , 0) coincides with the direction of b′, and the plane
generated by b, b′ coincides with the plane {(x1, x2, 0, . . . , 0) : x1 ∈ R, x2 ∈ R}, i.e., b′ =
(|b′|, 0, 0, . . . , 0), b = (b1, b2, 0, . . . , 0). Then the condition x ∈ V δ

b (3ρa) ∩ V δ
b′
(
2ρ

1
2
) ∩ D4

implies that

x1|b′| = O
(
ρ

1
2
)
, x1b1 + x2b2 = O(ρa), x2

1 + x2
2 + · · · + x2

d−1 = O(ρ2). (114)

First, the equality of (114) shows that x1 = O
(
ρ

1
2
)
. Since b′ and b are linearly independent

vectors of �δ, we have |b′||b2| � µ(Fδ), where |b′| < ραd . Therefore, |b2| � µ(Fδ)ρ
−αd and

the second equality of (114) implies that x2 = O(ρa+αd ). The third equality of (114) implies
that V δ

b (3ρa) ∩ V δ
b′
(
2ρ

1
2
) ∩ D4 is a subset of[−c14ρ

1
2 , c14ρ

1
2
]× [−c14ρ

a+αd , c14ρ
a+αd ] × ([−c14ρ, c14ρ])d−3

which has the measure O
(
ρd−3+ 1

2 +a+αd
)
. This with |�δ(ρ

αd )| = O(ρ(d−1)αd ) gives

µ
((

V δ
b (3ρa) ∩ D1

(
2ρ

1
2
) ∩ D4) = O

(
ρd−3+ 1

2 +a+dαd
) = o(ρd−2+a), (115)

since dαd < 1
2 (see the definition of αd in (11)). In the same way, we get

µ
(
V δ

b (3ρa) ∩ D2(2ρa+2α) ∩ D4
) = O(ρd−3+2a+(d+4)α) = o(ρd−2+a), (116)

since a + (d + 4)α < 1 (see (11) and (13)). To estimate µ(Db′,j (ρ, v, 6)), we turn the
coordinate axes so that the direction of (1, 0, 0, . . . , 0) coincides with the direction of b′.
Then, the condition x ∈ Db′,j (ρ, v, 6) ∩ D4 implies that

2x1|b′| + |b′|2 + |(j + v)δ|2| = O(ραd ), x2
1 + x2

2 + · · · + x2
d−1 = O(ρ2).

These equalities show that x1 belongs to the interval of length O(ραd ) and
µ(Db′,j (ρ, v, 6) ∩ D4) = O(ρd−2+αd ). Now using (109) and taking into account that
n1 = O(ρ

1
2 (1+αd)), |�δ(ρ

αd )| = O(ρ(d−1)αd ), we obtain

µ(D(ρ, v, 4) ∩ D4 = O(ρd−2+ 1
2 +(d+ 1

2 )αd ) = o(ρd−2+a),

since a > 1
2 + (d + 1

2 )αd (see (13) and (11)). This estimation with (115), (116) and (113)
implies that µ(D′(ρ)) > c15ρ

d−2+a. Thus, the second equality of (111) follows from (112) .
Now take any element β from S ′

2(ρ, b, v) ∩ �δ. It follows from the definitions of the sets
S ′

2(ρ, b, v),Db′,j (ρ, v, 4), A(β, ρ) (see (110) and (27)) that v /∈ A(β, ρ) and (29) hold.
Let us prove the inequalities in (58). By the definition of S ′

2(ρ, b, v), we have
β ∈ V δ

b (4ρa)
∖
V δ

b (ρa). This means that ρa � |2〈β, b〉 + |b|2| < 4ρa. This with the
obvious relations |b| = O(1), |τ | = O(1) implies (58).

Now we prove (59). If γ ∈ S(δ, b)\δR, then

γ = nb + aδ, n 	= 0, n ∈ Z, a ∈ R, |〈γ, b〉| = |n||b|2 � |b|2, (117)

since each γ ∈ � has decomposition γ = b′ + aδ, where b′ ∈ �δ, and b is a visible element of
�δ (see (3.2) of [10] and the definition of S(δ, b) in (5)). This with the relation 〈β + τ, δ〉 = 0
gives 〈β + τ, γ 〉 = n〈β + τ, b〉. Therefore, the first inequality of (58) implies (59).

Let us prove (60). If γ 	∈ S(δ, b), |γ | < |ρ|α , then γ = b′ + aδ, where a ∈ R, b′ ∈
�δ(ρ

α)\bR and 〈β + τ, γ 〉 = 〈β + τ, b′〉. Therefore, using |b′| = O(ρα), |τ | = O(1) and
arguing as in the proof of (58), we see that the relation β /∈ V δ

b′(ρa+2α) (see definition of
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S ′
2(ρ, b, v)) implies (60). The inequality (61) follows from the definition of fδ,β+τ (x), (59),

(60) and from the obvious relation∑
γ∈�

|γ ||qγ | < c16,

(see (1)). The last inequality with (117) implies the convergence of the series (5). �

Appendix A. The proof of (81)

Here, we estimate the conjugate C1(j ′, λj,β) of C1(j
′, λj,β), namely, we prove that∑

(j1,β1)∈Q(ρα,9r)

A(j ′, β, j ′ + j1,β + β1)A(j ′ + j1,β + β1, j, β)

λj,β − λj ′+j1,β+β1

= O(ρ−2ar2), (A.1)

(see (79)), where Q(ρα, 9r) = {(j1, β1) : |j1δ| < 9r, 0 < |β1| < ρα}, j ∈ S1(ρ), |j ′δ| <

r, r = O
(
ρ

1
2 α2
)
. The conditions on indices j ′, j1, j and (39) imply that µj ′+j1 = O(r2), µj =

O(r2). These with β /∈ V δ
β1

(ρa))), where β1 ∈ �δ(pρα), (see (29)) give

λj,β − λj ′+j1,β+β1 = −2〈β, β1〉 + O(r2), |〈β, β1〉| > 1
3ρa. (A.2)

Using this, (34) and (A.1), we get

C1(j ′, λj,β) =
∑
β1

C ′

−2〈β, β1〉 + O(ρ−2ar2), (A.3)

where C ′ = ∑
j1

A(j ′, β, j ′ + j1,β + β1)A(j ′ + j1,β + β1, j, β). In [10], we proved that (see
(3.21), (3.7), lemma 3.3 of [10])

A(j ′, β, j ′ + j1,β + β1) =
∑

n1:(n1,β1)∈�′(ρα)

c(n1, β1)a(n1, β1, j
′, β, j ′ + j1,β + β1),

A(j ′ + j1,β + β1, j, β) =
∑

n2:(n2,−β1)∈�′(ρα)

c(n2,−β1)a(n2,−β1, j
′ + j1,β + β1, j, β),

(A.4)

�′(ρα) = {(n1, β1) : β1 ∈ �δ\0, n1 ∈ Z, β1 + (n1 − (2π)−1〈β1, δ
∗〉)δ ∈ �(ρα)},

c(n1, β1) = qγ1 , γ1 = β1 + (n1 − (2π)−1〈β1, δ
∗〉)δ ∈ �(ρα),

(A.5)

a(n1, β1, j
′, β, j ′ + j1,β + β1) = (ei(n1−(2π)−1〈β1,δ

∗〉)ζ ϕj ′,v(β)(ζ ), ϕj ′+j1,v(β+β1)(ζ )),

a(n2,−β1, j
′ + j1,β + β1, j, β) = (ei(n2−(2π)−1〈−β1,δ

∗〉)ζ ϕj ′+j1,v(β+β1)(ζ ), ϕj,v(β)(ζ ))

= (ϕj ′+j1,v(β+β1)(ζ ), e−i(n2−(2π)−1〈−β1,δ
∗〉)ζ ϕj,v(β)(ζ ))

= (e−i(n2−(2π)−1〈−β1,δ∗〉ζ ϕj,v(β)(ζ ), ϕj ′+j1,v(β+β1)(ζ )), (A.6)
where δ∗ is the element of � satisfying 〈δ∗, δ〉 = 2π.

Now, to estimate the right-hand side of (A.3) we prove that∑
j1

a(n1, β1, j
′, β, j ′ + j1,β + β1)a(n2,−β1, j

′ + j1, β + β1, j, β)

= a(n1 + n2, 0, j ′, β, j, β) + O(ρ−pα). (A.7)

By definition, we have

a(n1 + n2, 0, j ′, β, j, β) = (ei(n1+n2)ζ ϕj ′,v(β)(ζ ), ϕj,v(β)(ζ ))

= (ei(n1−(2π)−1〈β1,δ
∗〉)ζ ϕj ′,v(β)(ζ ), e−i(n2−(2π)−1〈−β1,δ

∗〉)ζ ϕj,v(β)(ζ )).
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This, (A.6) and the following formulae

ei(n1−(2π)−1〈β1,δ
∗〉)ζ ϕj ′,v(β)(ζ )

=
∑

|j1δ|<9r

a(n1, β1, j
′, β, j ′ + j1,β + β1)ϕj ′+j1,v(β+β1)(ζ ) + O(ρ−pα),

e−i(n2−(2π)−1〈−β1,δ
∗〉)ζ ϕj,v(β)(ζ )

=
∑

|j1δ|<9r

a(n2,−β1, j ′, β, j ′ + j1,β + β1)ϕj ′+j1,v(β+β1) + O(ρ−pα),

×
∑
j1

|a(n1, β1, j
′, β, j ′ + j1,β + β1)| = O(1) (A.8)

(see (3.16), (3.17) of [10]) give the proof of (A.7). Now from (A.7), (A.4), (A.3) we obtain

C ′ =
∑
n1

∑
n2

(c(n1, β1)c(n2,−β1)a(n1 + n2, 0, j ′, β, j, β) + O(ρ−pα)),

C1(j ′, λj,β) =
∑
β1

∑
n1

∑
n2

C ′
1(β1, n1, n2) + O(ρ−2ar2),

where C ′
1(β1, n1, n2) = c(n1,β1)c(n2,−β1)a(n1+n2,0,j ′,β,j,β)

−2〈β,β1〉 . It is clear that

C ′
1(β1, n1, n2) + C ′

1(−β1, n2, n1) = 0. (A.9)

Therefore C1(j ′, λj,β) = O(ρ−2ar2).

Appendix B. The proof of (47)

Arguing as in the proof of (80), we see that C2(�j,β) = C2(λj,β) + O(ρ−3a) and by (A.4)

C2(λj,β) =
∑
β1,β2

( ∑
n1,n2,n3

(∑
j1,j2

c(n1, β1)c(n2, β2)c(n3,−β1 − β2)

(λj,β − λj(1),β(1))(λj,β − λj(2),β(2))
a(n1, β1, j, β, j (1),β(1))

× a(n2, β2, j (1),β(1), j (2),β(2))a(n3,−β1 − β2, j (2), β(2), j, β),

where (j1, β1) ∈ Q(ρα, 9r1), (j2, β2) ∈ Q(ρα, 90r1), j ∈ S1, β1 + β2 	= 0. Applying (A.7)
two times and using (A.8), we get∑
j1

a(n1, β1, j, β, j (1),β(1))

×
⎛
⎝∑

j2

a(n2, β2, j (1),β(1), j (2),β(2))a(n3,−β1 − β2, j (2),β(2), j, β)

⎞
⎠

=
∑
j1

a(n1, β1, j, β, j (1),β(1))(a(n2 + n3,−β1, j (1),β(1), j, β) + O(ρ−pα))

= a(n1 + n2 + n3, 0, j, β, j, β) + O(ρ−pα).

Using this in the above expression for C2(λj,β) and taking into account that

λj,β − λj(1),β(1) = −2〈β, β1〉 + O(ρ2α1), |〈β, β1〉| > 1
3ρa,

λj,β − λj(2),β(2) = −2〈β, β1 + β2〉 + O(ρ2α1), |〈β, β1 + β2〉| > 1
3ρa,

which can be proved as (A.2), we have C2(λj,β) = O(ρ−3a+2α1)+∑
β1,β2

∑
n1,n2,n3

c(n1, β1)c(n2, β2)c(n3,−β1 − β2)a(n1 + n2 + n3, 0, j, β, j, β)

4〈β, β1〉〈β, β1 + β2〉 .
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Grouping the terms with the equal multiplicands

c(n1, β1)c(n2, β2)c(n3,−β1 − β2), c(n2, β2)c(n1, β1)c(n3,−β1 − β2),

c(n1, β1)c(n3,−β1 − β2)c(n2, β2), c(n2, β2)c(n3,−β1 − β2)c(n1, β1),

c(n3,−β1 − β2)c(n1, β1)c(n2, β2), c(n3,−β1 − β2)c(n2, β2)c(n1, β1)

and using the obvious equality
1

〈β, β1〉〈β, β1 + β2〉 +
1

〈β, β2〉〈β, β2 + β1〉 +
1

〈β, β1〉〈β,−β2〉
+

1

〈β, β2〉〈β−, β1〉 +
1

〈β,−β1 − β2〉〈β,−β2〉 +
1

〈β,−β1 − β2〉〈β,−β1〉 = 0,

we see that C2(λj,β) = O(ρ−3a+2α1).

Appendix C. The proof of (46)

By (80), we have C1(�j,β) = C1(λj,β) + O(ρ−3a). Therefore, we need to prove that

C1(λj,β) = 1

4

∫
F

|fδ,β+τ (x)|2|ϕδ
j,v(〈δ, x〉)|2 dx + O(ρ−3a+2α1),

where

C1(λj,β) ≡
∑
β1

∑
j1

A(j, β, j + j1,β + β1)A(j + j1,β + β1, j, β)

λj,β − λj+j1,β+β1

,

(j1, β1) ∈ Q(ρα, 9r1), j ∈ S1, and by (A.4)

C1(λj,β) =
∑
β1

∑
n1:(n1,β1)∈�′(ρα)

∑
n2:(n2,−β1)∈�′(ρα)

∑
j1

c(n1, β1)c(n2,−β1)

λj,β − λj+j1,β+β1

× a(n1, β1, j, β, j + j1,β + β1)a(n2,−β1, j + j1, β + β1, j, β).

Replacing λj,β −λj+j1,β+β1 by −(2〈β +τ, β1〉+ |β1|2 +µj+j1(v(β +β1))−µj(v(β))) and using
(A.7) for j ′ = j, we have

C1(j, λj,β) =
∑
β1

∑
n1

∑
n2

c(n1, β1)c(n2,−β1)a(n1 + n2, 0, j, β, j, β)

−2〈β + τ, β1〉

+
∑
β1

∑
n1

∑
n2

∑
j1

c(n1, β1)c(n2,−β1)a(n1, β1, j, β, j + j1,β + β1)

2〈β + τ, β1〉(2〈β + τ, β1〉 + |β1|2 + µj+j1 − µj)

× a(n2,−β1, j + j1, β + β1, j, β)(|β1|2 + µj+j1(v(β + β1)) − µj(v(β))).

The formula (A.9) shows that the first summation of the right-hand side of this equality
is zero. Thus, we need to estimate the second sum. For this, we use the following relation

µj+j1(v(β + β1))a(n1, β1, j, β, j + j1, β + β1) = (ei(n1− 〈β1 ,δ∗〉
2π

)ζ ϕj,v(β)(ζ ), Tvϕj+j1,v(β+β1)(ζ )
)

= (Tv(e
i(n1−(2π)−1(β1,δ

∗〉)ζ ϕj,v(β)(ζ )), ϕj+j1,v(β+β1)(ζ )

= (|n1 − (2π)−1〈β1, δ
∗〉|2|δ|2 + µj(v))(ei(n1−(2π)−1〈β1,δ

∗〉)ζ ϕj,v(β)(ζ ), ϕj+j1,v(β+β1)(ζ ))

− 2i(n1 − (2π)−1〈β1, δ
∗〉)|δ|2(ei(n1−(2π)−1〈β1,δ

∗〉)ζ ϕ′
j,v(β)(ζ )), ϕj+j1,v(β+β1)(ζ )).

Using this, (A.7) and the formula∑
j1

(ei(n1−(2π)−1〈β1,δ
∗〉)ζ ϕ′

j,v(β)(ζ )), ϕj+j1,v(β+β1)(ζ ))a(n2,−β1, j + j1, β + β1, j, β)

= (ei(n1+n2)ζ ϕ′
j,v(β)(ζ )), ϕj,v(β)(ζ )) + O(ρ−pα)
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which can be proved as (A.7), we obtain∑
j1

µj+j1(v(β + β1))a(n1, β1, j, β, j + j1, β + β1)a(n2,−β1, j + j1, β + β1, j, β)

= (|n1 − (2π)−1〈β1, δ
∗〉|2)|δ|2 + µj(v))a(n1 + n2, 0, j, β, j, β)

− 2i(n1 − (2π)−1〈β1, δ
∗〉)|δ|2(ei(n1+n2)ζ ϕ′

j,v(β)(ζ )), ϕj,v(β)(ζ )). (C.1)

Here, the last multiplicand can be estimated as follows

µj(v)(ϕj,v(β)(ζ ), ei(n1+n2)ζ ϕj,v(β)(ζ )) = (ϕj,v(β)(ζ ), Tv(e
i(n1+n2)ζ ϕj,v(β)(ζ )))

= (n1 + n2)
2|δ|2(ϕj,v(β)(ζ ), ei(n1+n2)ζ ϕj,v(β)(ζ ))

+ 2i(n1 + n2)|δ|2(ϕj,v(β)(ζ ), ei(n1+n2)ζ ϕ′
j,v(β)(ζ )) + µj(v)(ϕj,v(β), ei(n1+n2)ζ ϕj,v(β)),

× (ei(n1+n2)ζ ϕ′
j,v(β)(ζ )), ϕj,v(β)(ζ )) = n1 + n2

2i
(ei(n1+n2)ζ ϕj,v(β)(ζ )), ϕj,v(β)(ζ )).

Using this, (C.1), and (A.7), we get∑
j1

(a(n1, β1, j, β, j + j1,β + β1)a(n2,−β1, j + j1, β + β1, j, β))

× (|β1|2 + µj+j1(v(β + β1)) − µj(v(β))) = a(n1 + n2, 0, j, β, j, β)

×
(

|β1|2 + |n1 − 〈β1, δ
∗〉

2π
|2|δ|2 −

(
n1 − 〈β1, δ

∗〉
2π

)
|δ|2(n1 + n2)

)

=
(

|β1|2 + |δ|2
(

n1 − 〈β1, δ
∗〉

2π

)(
−n2 − 〈β1, δ

∗〉
2π

))
a(n1 + n2, 0, j, β, j, β).

Thus, C1(j, λj,β) = C + O(ρ−3a+2α1), where

C =
∑

β1,n1,n2

c(n1, β1)c(n2,−β1)a(n1 + n2, 0, j, β, j, β)

4|〈β + τ, β1〉|2

×
(

|β1|2 +

(
n1 − 〈β1, δ

∗〉
2π

)(
−n2 − 〈β1, δ

∗〉
2π

)
|δ|2
)

. (C.2)

Now we consider
∫
F

|fδ,β+τ (x)|2|ϕn,v(〈δ, x〉)|2 dx, where fδ,β+τ is defined in (13). By (A.5),

fδ,β+τ (x) =
∑

(n1,β1)∈�′
δ(ρ

α)

β1 +
(
n1 − 〈β1,δ

∗〉
2π

)
δ

〈β + τ, β1〉 c(n1, β1) ei〈β1+(n1− 〈β1 ,δ∗〉
2π

)δ,x〉.

Here fδ,β+τ (x) is a vector of R
d . Using 〈β, δ〉 = 0 for β ∈ �δ, we obtain

|fδ,β+τ (x)|2 =
∑

(n1,β1),(n2,β2)∈�′
δ(ρ

α)

〈β1, β2〉 + (n1 − 〈β1,δ
∗〉

2π
)(n2 − 〈β1,δ

∗〉
2π

)|δ|2
〈β + τ, β1〉〈β + τ, β2〉

× c(n1, β1)c(−n2,−β2) ei〈β1−β2+(n1−n2−(2π)−1〈β1−β2,δ
∗〉)δ,x〉.

Since ϕj,v(〈δ, x〉) is a function of 〈δ, x〉, we have∫
F

ei〈β1−β2+(n1−n2−(2π)−1〈β1−β2,δ
∗〉)δ,x〉|ϕj,v(〈δ, x〉)|2 dx = 0

for β1 	= β2. Therefore,∫
F

|fδ,β+τ (x)|2|ϕj,v(〈δ, x〉)|2 dx =
∑

β1,n1,n2

c(n1, β1)c(−n2,−β1)

|〈β + τ, β1〉|2

×
(

|β1|2 +

(
n1 − 〈β1, δ

∗〉
2π

)(
n2 − 〈β1, δ

∗〉
2π

)
|δ|2a(n1 − n2, 0, j, β, j, β〉.

Replacing n2 by −n2, we get
∫
F

|fδ,β+τ (x)|2|ϕn,v(〈δ, x〉)|2 dx = 4C (see (C.2)) and (46).
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Appendix D. Asymptotic formulae for Tv(Q)

It is well-known that the large eigenvalues of T0(Q) lie in O
(

1
m4

)
neighborhood of

|mδ| +
1

16π |mδ|3
∫ 2π

0
|Q(t)|2 dt

for the large values of m (see [1], p 58). This formula yields the invariant (17). Using the
asymptotic formulae for solutions of the Sturm–Liouville equation (see [1], p 63), one can
easily obtain that

ϕn,v(ζ ) = ei(n+v)ζ

(
1 +

Q1(ζ )

2i(n + v)|δ|2 +
Q(ζ) − Q(0) − 1

2Q2
1(ζ )

4(n + v)2|δ|4
)

+ O

(
1

n3

))
,

where Q1(ζ ) = ∫ ζ

0 Q(t) dt. From this, by direct calculations, we find A0(ζ ), A1(ζ ), A2(ζ )

(see (6)) and then using these in (7), we get the invariant (16).
Now we consider the eigenfunction ϕn,v(ζ ) of Tv(p) in the case v 	= 0, 1

2 and
p(ζ ) = p1 eiζ +p−1 e−iζ . The eigenvalues and the eigenfunctions of Tv(0) are (n+v)2|δ|2

and ei(n+v)ζ , for n ∈ Z. Since the eigenvalues of Tv(p) are simple for v 	= 0, 1
2 , by the

well-known perturbation formula

(ϕn,v(ζ ), ei(n+v)ζ )ϕn,v(ζ ) = ei(n+v)ζ

+
∑

k=1,2,...

(−1)k+1

2iπ

∫
C

(Tv(0) − λ)−1p(x))k(Tv(0) − λ)−1 ei(n+v)ζ dλ, (D.1)

where C is a contour containing only the eigenvalue (n + t)2|δ|2. Using

(Tv(0) − λ)−1 ei(n+v)ζ = ei(n+v)ζ

(n + v)2|δ|2 − λ
,

we see that the kth ( k = 1, 2, 3, 4) term Fk of the series (D.1) has the form

F1 = 1

2iπ

∫
C

∑
m=1,−1

pm ei(n+m+v)ζ

((n + v)2|δ|2 − λ)((n + m + v)2|δ|2 − λ)
dλ,

F2 = −1

2iπ

∫
C

∑
m,l=1,−1

pmpl ei(n+m+l+v)ζ

((n + v)2|δ|2 − λ)

× 1

((n + m + v)2|δ|2 − λ)((n + m + l + v)2|δ|2 − λ)
dλ,

F3 = 1

2iπ

∫
C

∑
m,l,k=1,−1

pmplpk ei(n+m+l+k+v)ζ

((n + v)2|δ|2 − λ)((n + m + v)2|δ|2 − λ)

× 1

((n + m + l + v)2|δ|2 − λ)((n + m + l + k + v)2|δ|2 − λ)
dλ,

F4 = −1

2iπ

∫
C

∑
m,l,k,r=1,−1

pmplpkpr ei(n+m+l+k+r+v)ζ

((n + m + l + k + r + v)2|δ|2 − λ)

× 1

((n + m + v)2|δ|2 − λ)((n + m + l + v)2|δ|2 − λ)

× 1

((n + m + l + k + v)2|δ|2 − λ)((n + v)2|δ|2 − λ)
dλ.
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Since the distance between (n + v)2|δ|2 and (n′ + v)2|δ|2 for n′ 	= n is greater than c17n ,
we can choose the contour C such that

1

|(n′ + v)2|δ|2 − λ| <
c18

n
, ∀ λ ∈ C, ∀ n′ 	= n

and the length of C is less than c19. Therefore F5 + F6 + · · · = O(n−5). Now, we calculate the
integrals in F1, F2, F3, F4 by the Cauchy integral formula and then decompose the obtained
expression in powers of 1

n
. Then,

F1 = ei(n+v)ζ

(
(p1 eiζ − p−1 e−iζ )

1

|δ|2
(−1

2n
+

v

2n2
− 4v2 + 1

8n3
+ O

(
1

n4

))

+ (p1 eiζ + p−1 e−iζ )
1

|δ|2
(

v

4n2
− v

2n3
+

12v2 + 1

16n4
+ O

(
1

n5

)))
.

Let F2,1 and F2,2 be the sum of the terms in F2 for which m+l = ±2 and m+l = 0 respectively,
i.e., F2 = F2,1 + F2,2, where

F2,1 = ei(n+v)ζ

(
((p1)

2 e2iζ + (p−1)
2 e−2iζ )

1

|δ|4
(−1

8n2
+

−v

4n3
− 12v2 + 7

32n4
+ O

(
1

n5

))

+ ((p1)
2 e2iζ − (p−1)

2 e−2iζ )
1

|δ|4
( −3

16n3
+ O(

1

n4
)

))
,

F2,2 = ei(n+v)ζ |p1|2
(

c20

n2
+ +

c21

n3
+

c22

n4
+ O

(
1

n5

))

and c20, c21, c22 are the known constants. Similarly, F3 = F3,1 + F3,2, where F3,1 and F3,2 are
the sum of the terms in F3 for which m + l + k = ±3 and m + l + k = ±1, respectively. Hence

F3,1 = ei(n+v)ζ

((
p3

1 e3iζ − p3
−1 e−iζ

) 1

|δ|6
( −1

48n3
+ O

(
1

n4

))

+
(
p3

1 e3iζ + p3
−1 e−3iζ

) 1

|δ|6
(

1

16n4
+ O

(
1

n5

)))
,

F3,2 = ei(n+v)ζ

(
(p1 eiζ − p−1 e−iζ )|p1|2

(
c23

n3
+

c24

n4
+ O

(
1

n5

))

+ (p1 eiζ + p−1 e−iζ )|p1|2
(

c25

n4
+ O

(
1

n5

)))
.

Similarly F4 = F4,1 + F4,2 + F4,3, where F4,1, F4,2, F4,3 are the sum of the terms in F4 for
which m + l + k + r = ±4,m + l + k + r = ±2,m + l + k + r = 0, respectively. Thus

F4,1 = ei(n+v)ζ
(
p4

1 e4iζ + p4
−1 e−4iζ

) 1

|δ|8
(

1

384n4
+ O

(
1

n5

))
,

F4,2 = ei(n+v)ζ
(
p2

1 e2iζ + p2
−1 e−2iζ

)|p1|2
(

c26

n4
+ O

(
1

n5

)))
,

F4,3 = ei(n+v)ζ |p1|4
(

c27

n4
+ O

(
1

n5

)))
.

Since pk
−1 e−ikζ is the conjugate of pk

1 eikζ , the real and imaginary parts of Fk e−i(n+v)ζ consist
of terms with multiplicands pk

1 eikζ + pk
−1 e−kiζ and pk

1 eikζ − pk
−1 e−ikζ , respectively. Taking
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into account this and using the above estimations, we get

|(ϕn,v, ei(n+v)ζ )ϕn,v|2

= 2

( ∑
k=1,2,3,4

Re(Fk) + Re(F1F2) + Re(F1F3)

)
+ |F1|2 + |F2|2 + O(n−5)

= 1 +
1

2n2

1

|δ|2 (p1 eiζ + p−1 e−iζ + c28|p1|2) +
1

n3
((p1 eiζ + p−1 e−iζ )c29

+ c30|p1|2) +
1

n4

(
(p1 eiζ + p−1 e−iζ )c31 + c32|p1|2 + c33|p1|4

+ c34|p1|2(p1 eiζ + p−1 e−iζ ) + (c35 + c36|p1|2)(p2
1 e2iζ + p2

−1 e−2iζ )
)

+ O

(
1

n5

)
,

where Re(F ) denotes the real part of F. On the other hand

|(ϕn,v(ζ ), ei(n+v)ζ )|2 =
(

c37
1

n2
+ c38

1

n3
+ c39

1

n4

)
|p1|2 + c40

1

n4
|p1|4 + O

(
1

n5

)
.

These equalities imply (19). The equality (20) is a consequence of (19), (17) and (7) for
k = 2, 4.
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